В статье описывается применение суперкомпьютера для обработки больших потоков данных с модельной экспериментальной установки по исследованию быстропротекающих процессов в динамической системе "жидкость – деформируемая конструкция". Рассматривается модельная установка, на которой отрабатывается методика интеграции установки, суперЭВМ и численной модели в единую экспериментально-вычислительную систему; приводится описание модели взаимодействия установки с суперкомпьютером, сетевой инфраструктуры проекта и управления установкой.

Исследования проводятся при поддержке Российского фонда фундаментальных исследований (грант РФФИ № 14-07-96003-р урал а).

Разработка технологической платформы на базе суперкомпьютера для обработки больших потоков экспериментальных данных

Д.Ф. Гайнутдинова, В.Я. Модорский, В.А. Щапов, Д.П. Чугунов, Г.Ф. Масич

1. Введение

При работе наукоемких образцов аэрокосмической техники в ряде случаев возникают непрогнозируемые эффекты, приводящие к параметрическим и функциональным отказам, а иногда и к разрушению конструкции. Некоторые отказы могут быть вызваны возникновением гидроупругих эффектов. Поэтому задача исследования и прогнозирования быстропротекающих процессов в динамической системе "жидкость – деформируемая конструкция" является актуальной.

С этой целью разработана экспериментальная установка для анализа динамических процессов взаимовлияния жидкости и деформируемой конструкции при различных видах нагружения гидродинамического объема и для верификации численных расчетов [1–8]. Чтобы обработать данные, генерируемые экспериментальной установкой, и управлять экспериментом в реальном времени необходимы большие вычислительные мощности. Рассмотрим мо-

дельную установку, на которой отрабатывается методика интеграции установки, суперЭВМ и численной модели в единую экспериментально-вычислительную систему, что позволяет как оптимизировать процесс измерения параметров реального объекта установкой путем использования численной модели объекта, так и верифицировать численную модель по данным экспериментальной установки. Кроме того, рассмотрим модель взаимодействия установки с суперкомпьютером, сетевую инфраструктуру проекта и управление установкой.

Предлагаемый подход позволяет масштабировать создаваемую экспериментально-вычислительную систему до десятков и сотен датчиков, привлекая вычислительные ресурсы нескольких суперкомпьютеров, что дает возможность исследовать натурные образцы техники.

2. Экспериментальная установка

Экспериментальная модельная установка для анализа динамических процессов взаимовлияния жидкости и деформируемой конструкции позволяет исследовать быстропротекающие процессы гидрогазоупругости и формировать поток данных по параметрам гидрогазодинамики и вибраций [1–6]. Это дает возможность верифицировать полученные на суперкомпьютере численные решения – с помощью натурного эксперимента и технологической платформы, которая объединяет установку, суперЭВМ и численную модель в единую экспериментально-вычислительную систему.

Установка представляет собой конструкцию (рис. 1), состоящую из рабочей камеры (труба с фланцами и фитингами для установки датчиков

вибраций и гидрофонов) и измерительно-задающего вычислительного комплекса, который включает:

- три датчика давления (гидрофоны);
- три датчика виброускорений РСВ 352С03;
- модуль согласования сигналов;

• шасси National Instruments (NI) PXI 1050, с установленным 8-канальным модулем NIPXI 4472В измерения динамических сигналов и программным обеспечением LabVIEW.11;

 устройство усиления и модуляции входного сигнала;

• узел нагружения – пьезокерамический излучатель.

В камеру заливается рабочее тело – жидкость. Входной сигнал для узла нагружения формируется в *National Instruments;* задаются амплитуда и частота сигналов. Далее сформированный сигнал поступает на устройство усиления и модуляции и затем – на пьезокерамический излучатель.

Сигналы, полученные в эксперименте, поступают на шасси NIPXI 1050, где происходит измерение динамических сигналов с гидрофонов и вибродатчиков. Далее они подаются на виртуальный прибор, созданный на базе программного комплекса LabVIEW.11, где происходит запись и обработка сигналов с датчиков. Виртуальный прибор программного комплекса LabVIEW.11. представлен на рис. 2.

В верхней части имеются окна (поля) для ввода, которые позволяют производить следующие действия:

1 Настройка записи файлов

Перед началом эксперимента оператору необходимо указать полный путь к выходному файлу в текстовом поле "Путь к файлу для записи измерений". Дополнительно в текстовом поле "Описание измерений" можно ввести комментарии к эксперименту. Комментарии сохраняются в том же файле.

2 Настройка полученных данных

В поле управления "Период цикла опроса, мс" оператор задает частоту считывания данных из буфера. Количество выборок на канал указывается в

Рис. 2. Виртуальный прибор LabVIEW.11

окне "Размер буфера (выборок на канал)". Если настройки получения данных заданы правильно, то постоянно светится зеленый индикатор "Чтение из буфера в норме" – в противном случае компьютер не будет успевать считывать из буфера, и на графиках будут пропуски.

Задание частоты дискретизации сигнала

Это значение оператор вводит в поле "Частота дискретизации". Чем выше частота, тем выше точность измеряемого сигнала.

4 Задание частоты сигнала

Задание частоты сигнала отмечается в поле "Заданная частота (Гц)", где оператор задает требуемую частоту, в соответствии с планом физического эксперимента. Эту функцию можно реализовать двумя режимами управления: "Ручное" или "Авто". Нужный вариант оператор выбирает с помощью "переключателя". Для режима автоматического управления оператор может задать диапазон изменения параметров (в данном случае – частоты), прописывая значение в поле "Максимальная частота (Гц)". В поле "Шаг изменения частоты (Гц)" нужно ввести значение, которое определяет шаг измерений.

5 Проведение эксперимента

Для проведения измерения оператору необходимо нажать кнопку "Старт", чтобы остановить – кнопку "Стоп". В автоматическом режиме управления измерения автоматически прекратятся при завершении расчетов всех шагов.

В большом окне слева выводятся семь графиков, которые отображают результаты эксперимента с накоплением. Метка-название вертикальной оси на графике соответствует номеру измерительного канала на модульном приборе, к которому подключен датчик. По горизонтальной оси откладываются номера выборок.

Справа от графиков выводится легенда. Три верхних графика (*ai0*, *ai1*, *ai2*) показывают данные, получаемые с вибродатчиков. При переключении элемента управления оператор может выбрать отображение на графике виброускорений [м/c²], виброскорости [мм/c] или виброперемещений [мкм]. Текущее значение параметра отображается в поле справа от элемента управления.

Следующие три графика (*ai3*, *ai4*, *ai5*) показывают данные, получаемые с гидрофонов. При переключении элемента управления оператор может выбрать отображение на графике исходного сигнала – в вольтах или децибелах. Текущее значение параметра также отображается в поле справа.

Последний график (*ai6*) отображает данные, подаваемые на генератор сигнала.

3. Инфраструктура технологической платформы

3.1. Измерительная система

Измерительная система создана на платформе сбора данных *National Instruments*. Используется

модульная платформа NIPXI-1050, состоящая из комбинированного шасси PXI/SCXI: 8 слотов PXI/Compact PCI и 4 слота системы согласования сигналов SCXI. Установленный в шасси вычислительный модуль позволяет проводить предварительную обработку поступающих от установки данных. Ethernet-порт вычислительного модуля служит для связи с суперкомпьютером.

Ввод аналоговых динамических сигналов от датчиков осуществляется в модуль NI PXI-4472B, который установлен в шасси NI PXI-1050. Характеристики модуля: 8 каналов, 24 бит, 102.4 килоотсчетов в секунду.

На вход установки подаются управляющие воздействия через специализированные модули, установленные в *PXI/SCXI*-шасси. Эти модули генерируют сигналы с программно задаваемыми амплитудой и частотой, возбуждающие колебания в установке. Амплитуда и частота этих сигналов зависят от результата спектрального анализа выходного сигнала с гидрофонов.

3.2. Суперкомпьютер

В исследованиях использовался высокопроизводительный вычислительный кластер (*HPC cluster*) Центра высокопроизводительных вычислительных систем ПНИПУ с пиковой производительностью 24 терафлопс.

Кластер построен на 128-ми четырехъядерных процессорах *AMD Barselona-3* и 48-ми восьмиядерных процессорах *IntelXeon E5-2680*. В составе *HPC cluster* имеются: сервер доступа, система хранения данных емкостью 12 терабайт, сервер виртуальных машин и сервер мониторинга. Для межузлового об-

мена во время счета параллельных задач служит Interconnect Infiniband на коммутаторе VoltaireISR-9096. Соединение Ethernet Interconnet, построенное на базе коммутатора HPProCurveSwitch 5406zl, используется для загрузки данных, выгрузки результатов и для мониторинга.

Сопряжение платформы сбора данных *NI PXI-1050c* с *HPCcluster* выполнено по оптическому волокну, обеспечивается скорость передачи данных 1 Гбит/с (с возможностью перехода на 10–100 Гбит/с).

4. Модель потоков данных

Гибкость проводимых исследований обеспечивается согласно двум моделям обработки на суперкомпьютере измеряемых данных и управления экспериментом [7, 8].

Модель "память-хранилище" предусматривает три этапа:

1 загрузка данных от Источника в систему хранения данных (**СХД**);

2 обработка размещенных в СХД данных на суперкомпьютере;

З выгрузка результатов обработки с СХД на Источник.

Загрузка/выгрузка данных в/из хранилище (этапы 1 и 3) и последующая обработка (этап 2) выполняются либо с использованием протоколов передачи файлов (*FTP/GridFTP* и *SCP*), либо путем прямого доступа к хранилищу данных при помощи протоколов работы с файловой системой (*CIFS* и *NFS/pNFS*). Эта модель является классической схемой обработки больших данных на суперкомпьютере, в которой процесс измерений и процесс счета разорваны во времени и в ряде случаев не обеспечивают требования управления экспериментом.

Модель "память-память" ориентирована на обработку на суперкомпьютере интенсивного потока данных от Источника в режиме реального времени. Идея этой модели основана на прямом вводе интенсивного потока структурированных данных в память вычислительных узлов суперкомпьютера, минуя внешнюю систему хранения данных (рис. 3).

4.1 Процесс обработки

Обработка результатов при работе экспериментальной установки происходит в пакетном режиме. Суть пакетного режима работы заключается в следующем. На вход установки подается кортеж управляющих параметров, состоящий из совокупности воздействующих на установку сигналов с заданной амплитудой, частотой и т.д. На выходе установка генерирует кортежи измеряемых параметров, состоящих из совокупности измеряемых величин (давление, виброускорение и т.д.). Каждый измеряемый параметр определяется свойствами

Рис. 3. Инфраструктура обработки распределенных данных

исследуемого объекта и набором управляющих параметров.

Последовательность кортежей управляющих параметров, подаваемых на вход экспериментальной установки, порождает поток кортежей измеряемых параметров. Каждый кортеж измеряемых параметров допускает независимую обработку – следовательно, возможна их параллельная обработка на суперкомпьютере.

Большая часть входных параметров задается программно, без изменения физической конфигурации экспериментальной установки. Поэтому становится возможным автоматизировать процесс проведения серии измерений и совместить его с одновременным проведением обработки данных на суперкомпьютере.

Процесс взаимодействия экспериментальной установки с *HPCcluster* происходит следующим образом:

Измерительная система при экспериментальной установке получает от суперкомпьютера начальный список кортежей управляющих параметров, воздействует на установку и проводит измерение.

2 Измерительная система формирует кортеж измеряемых параметров, который предается в суперкомпьютер для обработки.

2 Суперкомпьютер обрабатывает полученный кортеж измеряемых параметров и формирует результаты счета, в том числе новые кортежи управляющих параметров.

4 Суперкомпьютер передает сформированные кортежи управляющих параметров в измерительную систему при установке и цикл повторяется.

Следует отметить, что обработка результатов измерений является самым трудоемким этапом. Наращивание вычислительной мощности при установке экономически невыгодно. Целесообразно использовать вычислительные ресурсы суперкомпьютерных центров и крупных ЦОД. Этому способствуют оптические сети, по которым возможна передача данных на скоростях от 1 до 100 Гбит/с.

Однако общепризнанное несоответствие между вычислительной производительностью и компонентами ввода/вывода высокопроизводительных систем текущего поколения сделало ввод/вывод наиболее узким местом. И одним из основных источников ухудшения совокупной производительности территориально распределенных высокоскоростных приложений является плохая end-to-end-производительность повсеместно применяемого протокола *TCP*. А основным механизмом повышения пропускной способности является параллельная передача (GrtidFTP, pNFS).

В этом случае, на первый план выходит необходимость обеспечения эффективной передачи данных на вычислительные узлы удаленного суперкомпьютера и решение задачи распределения элементов потока данных по вычислительным узлам.

5. Промежуточное программное обеспечение

Предложенный метод ввода интенсивного потока данных в удаленный суперкомпьютер требует распределения кортежей измеряемых параметров, генерируемых экспериментальной установкой, по вычислительным узлам. Передача и диспетчеризация потока данных между экспериментальной установкой и суперЭВМ будет осуществляться с помощью программного обеспечения **SciMQ** [8].

SciMQ – это программный комплекс, состоящий из сервера очередей, рассчитанного на диспетчеризацию потоков данных до 10 Гбит/с, клиентских библиотек и управляющего ПО в виде веб-интерфейса и приложения командной строки. Используемый в SciMQ алгоритм диспетчеризации распределяет исходные измерения по вычислительным узлам в порядке очереди по принципу *FIFO* ("первым пришел – первым ушел"). При этом гарантируется передача кортежа измерений и его обработка на супервычислителе даже в случае отключения некоторых вычислительных узлов.

Сервер очередей рекомендуется располагать достаточно близко к экспериментальной установке (в пределах одного здания), что решает проблему передачи данных по протяженной скоростной линии связи в удаленные вычислители. В реализуемой инфраструктуре это может быть сервер доступа, один из управляющих узлов суперкомпьютера или выделенная виртуальная машина на сервере виртуализации VMWare.

Сетевое взаимодействие программного обеспечения с экспериментальной установкой и расчетных приложений с сервером очередей будет производиться через клиентскую библиотеку, предоставляющую разработчикам интерфейс программирования приложений *C*++.

Заключение

Мы рассмотрели модель использования суперкомпьютера для обработки больших потоков данных. На данный момент реализован первый этап, в рамках которого методика работы отлажена на модельной экспериментальной установке по исследованию быстропротекающих процессов в динамической системе "жидкость – деформируемая конструкция". При этом разработана технологическая платформа, интегрирующая компоненты в единую экспериментально-вычислительную систему.

Об авторах

Д.Ф. Гайнутдинова – сотрудник Пермского национального исследовательского политехнического университета (ПНИПУ)

В.Я. Модорский - сотрудник ПНИПУ

Д.П. Чугунов – сотрудник Института механики сплошных сред УрО РАН

В.А. Щапов – сотрудник обоих учреждений Г.Ф. Масич – сотрудник обоих учреждений

Литература

1. Решение инженерных задач на высокопроизводительном вычислительном комплексе Пермского национального исследовательского политехнического университета / под ред. В.Я. Модорского. Пермь: Издательство Пермского национального исследовательского политехнического университета, 2014, 314 с.

2. Модорский В.Я., Соколкин Ю.В. Газоупругие процессы в энергетических установках. Москва: Наука, 2007, 176 с.

3. Гайнутдинова Д.Ф., Модорский В.Я., Масич Г.Ф. Проектирование технологической платформы для экспериментальных и вычислительных исследований быстропротекающих процессов гидроупругости // Научно-технический вестник Поволжья. Казань, 2014, №5, с. 155–158.

4. D.F. Gaynutdinova, V.Ya. Modorsky, V.Yu. Petrov Vibration and wave processes in view of non-linear deformation of components in aircraft engine hydraulic systems // APM 2015. Advanced Problems in Mechanics : proceedings of the XLIII Summer School – Conf., June 22-July 27 2015, St. Petersburg / Inst. for Problems in Mechanical Engineering. – St. Petersburg, 2015.

5. Гайнутдинова Д.Ф., Модорский В.Я., Петров В.Ю. Разработка методики проведения экспериментов по оценке параметров быстропротекающих процессов в динамической системе "жидкость-газ-конструкция"

на модельной установке // Научно-технический вестник Поволжья. Казань, 2015, №5, с. 178–180.

6. Gaynutdinova D.F., Modorsky V.Ya., Masich G.F. Infrastructure of data distributed processing in highspeed process research based on hydroelasticity tasks // Procedia Computer Science, 2015, vol. 66., p. 556–563.

7. Матвеенко А.М., Чаплыгин В.Я. Исследование течения жидкости в несимметричных гидравлических каналах // Вестник Московского авиационного института, 2012, т. 19, №1, с. 58–64.

8. Матвеенко А.М., Чаплыгин В.Я. Кавитация в зазорах с учетом вязкости жидкости и ускорения элементов конструкций // Материалы XX Международного симпозиума "Динамические и технологические проблемы механики конструкций и сплошных сред" им. А.Г. Горшкова. Москва, 2014, с. 142–144.

9. Щапов В.А., Масич А.Г., Масич Г.Ф. Модель потоковой обработки экспериментальных данных в распределенных системах // Вычислительные методы и программирование, 2012, раздел 2, с. 139–145.

10. Shchapov V., Masich A. Protocol of high speed data transfer from particle image velocimetry system to supercomputer // Proceedings of the 7th International Forum on Strategic Technology (IFOST), September 18–21, 2012. Tomsk: Tomsk Polytechnic University, 2012, vol. 2, p. 653–657.

3-6 мая 2016

Футбольный манеж,

Минск, Беларусь

оборудования

пр. Победителей, 20/2,

🔶 Выставки 🔶 Конференции 🔶 Семинары 🔶

лорусский промышленный форум

Международный выставочный проект

Проводится под патронажем Правительства Республики Беларусь

www.promforum.by

МЕЖДУНАРОДНЫЕ ВЫСТАВКИ

ПРОМЭКСПО – СОВРЕМЕННЫЙ ЗАВОД

оборудование, инструменты и материалы для оснащения промышленных предприятий. Промышленная продукция

ПРОМЭНЕРГО

энергетическое и электротехническое оборудование для промышленности

ЭНЕРГОРЕСУРСОСБЕРЕЖЕНИЕ И ЭКОЛОГИЯ

энергоэффективные и ресурсосберегающие технологии, оборудование и материалы, технологии охраны окружающей среды

НАУКА И ИННОВАЦИИ

научные разработки и передовые технологии для

SKCTOPOPYM www.expoforum.BY Международный симпозиум «Технологии. Оборудование. Качество»

Международный конкурс энергоэффективных и ресурсосберегающих технологий и

Конкурс сварщиков Беларуси с международным участием

тел./факс: (+375 17) 314 34 35 (+375 17) 314 34 30 e-mail: pva@expoforum.by sharko@expoforum.by Унитарное предприятие Экспофорум, УНН 100702781